If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=131.75
We move all terms to the left:
x^2-(131.75)=0
We add all the numbers together, and all the variables
x^2-131.75=0
a = 1; b = 0; c = -131.75;
Δ = b2-4ac
Δ = 02-4·1·(-131.75)
Δ = 527
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{527}}{2*1}=\frac{0-\sqrt{527}}{2} =-\frac{\sqrt{}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{527}}{2*1}=\frac{0+\sqrt{527}}{2} =\frac{\sqrt{}}{2} $
| (3x+11)*1,2=42 | | (n/4)-5=13 | | 3(i-1)-5=4(i+1)+5 | | –5u−5=–2u−2 | | 5x/4-3/2=3x-5/6 | | 67°+2x-1=180 | | 7x^2-9=31 | | 19+2(1-x)=13 | | B)10x–52=25B)10x–52=25 | | -3x-7+6x+2=7 | | (A)2+(b)2=36 | | {q}{10}=4 | | 4x/3=2x+1 | | 100x=12(100) | | (A)^2+(b)^2=36 | | -9-3r=-5r+9 | | 4x/3-3=-3-5x/4 | | v-21=24 | | x-12,x=13 | | -3(7x-2)=-3(7x+(-2)) | | A102=-3n+21 | | 9+5p=10p-7+1 | | 110=27x+2 | | )(d-3)25=30 | | p-62=14 | | 9b=10b-5 | | 9w^2-2=0 | | y/2+4=11 | | -2-4z=-3z+6 | | 6x+21+6x+15+2x+18+4x=360 | | 10+15y=−90 | | –2−4z=–3z+6 |